SCXI Terminal Blocks

- Terminal blocks for quick, easy connections
- Strain-relief clamps for reliable wiring
- Connectivity options including BNC and thermocouple plugs
- Shielded front-mount terminal blocks
- Rack-mount and DIN-rail-mount options available
- Terminal block options for specific measurement types
- Onboard temperature sensor for cold-junction compensation
- Isothermal construction for high-accuracy thermocouple measurements
- High-voltage attenuation
- AC/DC coupling
- Bridge offset nulling, shunt calibration
- Current inputs

Overview

Data Acquisition and Signal Conditioning

National Instruments SCXI terminal blocks provide a convenient method for connecting and disconnecting signals to your system. The NI SCXI-13xx front-mount terminal blocks provide direct connections to transducers at the screw terminals located within a fully shielded enclosure or at front-mounted BNC connectors. Strain-relief clamps hold the signal wires safely in place. You can also choose either the TC-2095 or BNC-2095 rack-mount terminal blocks for minithermocouple connectors or BNC connectors. These terminal blocks are ideal solutions for large-channel-count temperature or voltage applications.

TBX DIN-rail mount terminal blocks are an alternative to the SCXI-13xx terminal blocks which, attach directly to the front of an SCXI module. The TBX system includes shielded cables that connect the front I/O connector of an SCXI module to a TBX terminal block.

Some terminal blocks are designed for specific input types, such as thermocouples, strain gauges, and high-voltage inputs. See Tables 2, 3, and 4 to determine which SCXI terminal blocks are compatible with your SCXI module.

Figure 1. Terminal Block Configuration

		Open TC detection Isothermal construction, selectable ground referencing
		Sockets for current input resistors, Isothermal construction,
		high-voltage 250 VDC

Table 1. TBX Terminal Block Selection Guide

TBX Terminal Block Selection Guide

Use the following steps to select the correct combination of TBX terminal blocks and cables for your SCXI system:

- 1. Select the required terminal blocks -For each SCXI module, use Table 1 to select the proper TBX terminal block. If a TBX-13xx terminal block is not available for your SCXI module, select the appropriate number of general-purpose TBX-24F feedthrough terminal blocks.
- 2. Select cabling For each TBX terminal block, Table 1 lists the cable needed to connect the TBX terminal block to the SCXI module. Shielded cables are available in lengths of 1, 2, and 5 m. If using the TBX-1303, you also have the option to build a custom cable using the SBS-96F backshell kit. For each TBX-1303 for which you will build a custom cable, select two SBS-96F kits. If using the TBX-24F, you will use discrete wires to connect the TBX-24F to an SCXI front-mounting terminal block. Therefore, select the appropriate SCXI frontmounting terminal block for each SCXI module that will use the TBX-24F.
- 3. Rack-mount accessory (optional) If mounting for 19 in. rack enclosures is needed, use Table 2 to select the appropriate number of TBX-RM1 rack-mount kits.
- 4. Calibration Calibration of cold-junction sensors and attenuation terminal blocks is available for some devices. For more information, please visit ni.com/calibration

Module	Terminal Blocks	CJC ¹ Sensor	Other Terminal Block Functions
			Isothermal, signal ground referencing, and open thermocouple detection
			-
			Thermocouple plugs, signal ground referencing, Isothermal
			- Colored signal in the control of t
			Extends signal input range to 250 V _{rms} , switch configurable per channel Isothermal, high-accuracy design for thermocouples
			Current Input, 249 resistor across each input
			Current input, 247 Tesistor across each input
			Extends signal input range to 300 V _{rms} , programmable per channel
			=
			Extends signal input range to 250 V _{rms} , switch configurable per channel
			Isothermal, high-accuracy design for thermocouples
			Current Input, 249 resistor across each input
			-
			Offset nulling and shunt calibration for strain gauges
			Extends signal input range to 250 V _{rms} , switch configurable per channel
			Isothermal, high-accuracy design for thermocouples
			-
			-
			_
1	<u> </u>		² Recommended for thermocouples; includes isothermal design and high-precision

CJC sensor. 3Recommended for RTDs when using both SCXI-1102 and SCXI-1581

Table 3. SCXI-13xx, TC, and BNC Selection Guide

Terminal Block	Width Required (TBX-RM1 Rack-Mount)
TBX-1303	One-half
TBX-1325, TBX-1326, TBX-1328, TBX-1329, TBX-24F, CB-50	One-third

Module	Connector and Shell Assembly
SCXI-1100, SCXI-1102B/C, SCXI-1140, SCXI-1141, SCXI-1181	SCXI-1310
SCXI-1120, SCXI-1120D, SCXI-1121, SCXI-1126, and SCXI-1181	SCXI-1330

Table 2. Rack-Mount Widths of TBX Terminal Blocks

Table 4. Custom Cabling Accessories

Figure 1. SCXI-1303 Terminal Block

Figure 2. SCXI-1305 Terminal Block

Data Acquisition and Signal Conditioning

Figure 3. SCXI-1310 Connector and Shell Assembly

SCXI-1300777687-00
The SCXI-1300 connects input signals to the SCXI-1100, SCXI-1102/B/C, and
SCXI-1104/C modules. The SCXI-1300 is a general-purpose terminal block with
an onboard temperature sensor for cold-junction compensation. Also works with
SCXI-1181 and SCXI-1181K modules.
SCXI-1301777687-01
$20\hbox{-screw terminal block for the SCXI-1140, SCXI-1181, and SCXI-1181K modules.}\\$
SCXI-1302
50-screw terminal block for SCXI-1180 feedthrough panel.
SCXI-1303 (See Figure 1)777687-03
Terminal block for use with the SCXI-1100 and SCXI-1102/B/C modules. Designed
especially for high-accuracy thermocouple measurements, the SCXI-1303 includes
isothermal construction that minimizes errors caused by thermal gradients between
terminals and the cold-junction sensor. The SCXI-1303 also includes circuitry for $\ensuremath{^{\circ}}$
open-thermocouple detection as well as automatic ground referencing for floating
(nongrounded) thermocouples.
CCVI 1204
SCXI-1304
The SCXI-1304, for the SCXI-114x modules, includes AC coupling circuitry, with
switches on each channel. Each channel also includes a switchable connection to
ground through a 100 k $$ bias resistor to provide a reference for floating input sources.
SCXI-1305 (See Figure 2)777687-05
Includes convenient BNC connectors for use with the SCXI-1120/D, SCXI-1121,
SCXI-1125, SCXI-1126, and SCXI-114x. Functionally equivalent to the SCXI-1304
terminal block, the SCXI-1305 includes switchable AC coupling circuitry and ground
referencing on each channel.
SCXI-1308777687-08
Current input terminal block for the SCXI-1100 and SCXI-1102/B/C analog input
modules. Each input includes a 249 precision resistor so you can read 0 to 20 mA
and 4 to 20 mA current inputs.
SCXI-1310 (See Figure 3)
Connector and shell assembly used to create custom cabling solutions from the
SCXI-1100, SCXI-1102/B/C, SCXI-1104/C, SCXI-114x, and SCXI-1181 to custom
terminations. A low-cost alternative to SCXI terminal blocks, it consists of a
hardened plastic enclosure and one connector with solder pins for signal connections.
CCVI 1212
SCXI-1313
basis programmatically through software commands. The SCXI-1313 also includes

an onboard temperature sensor for thermocouples cold-junction compensation.

SCXI-1314
SCXI-1315
SCXI-1320 (See Figure 4)
SCXI-1321 (See Figure 5)
00// 4000
SCXI-1322
Terminal block required to connect signals to the SCXI-1122 module that includes an $$
Terminal block required to connect signals to the SCXI-1122 module that includes an onboard temperature sensor for cold-junction compensation. SCXI-1324
Terminal block required to connect signals to the SCXI-1122 module that includes an onboard temperature sensor for cold-junction compensation. SCXI-1324
Terminal block required to connect signals to the SCXI-1122 module that includes an onboard temperature sensor for cold-junction compensation. SCXI-1324

thermocouple applications with the SCXI-1120/D, SCXI-1121, or SCXI-1125.

Figure 4. SCXI-1320 Terminal Block

Figure 5. SCXI-1321 Terminal Block

Figure 6. SCXI-1327 Terminal Block

Figure 7. SCXI-1328 Terminal Block

Figure 8. SCXI-1331Terminal Block

Figure 9. SCXI-1332 Terminal Block

Data Acquisition and Signal Conditioning

Figure 10. BNC-2095

Connector and shell assembly (hardened plastic enclosure and solder pins) used to create custom cabling solutions from the SCXI-1120/D, SCXI-1121, SCXI-1125, SCXI-1126, and SCXI-1181 to custom terminations.

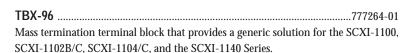
SCXI-1331 (See Figure 8)777687-31 General-purpose terminal block for the SCXI-1127 multiplexer/matrix module with 64 generic screw terminals and a cold-junction compensation sensor. For SCXI-1127 multiplexer applications or matrix configurations other than a multiple of eight columns by four rows. Includes sockets for matrix expansion cables.

Multiplexer/matrix terminal block for the SCXI-1127 configures the SCXI-1127 as an eight column by four row switching matrix. You can connect signals to both the columns and rows using screw terminals.

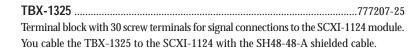
SCXI-1333	777687-33
SCXI-1334	777687-34
SCXI-1335	777687-35
SCXI-1336	777687-36
SCXI-1337	777687-37
SCXI-1339	777687-39

These terminal blocks are designed for use with the SCXI-1129 high-density matrix switching module. Each of these terminal blocks gives the high-density matrix a different configuration. See page 484 for more information on how to choose the appropriate series of terminal blocks for the SCXI-1129.

SCXI-1338777687-38 Current input terminal block for the SCXI-1120/D, SCXI-1125, and SCXI-1126. Each input includes a 249 precision resistor for reading 0 to 20 mA or 4 to 20 mA


current inputs.

BNC-2095 (See Figure 10)777508-01 The BNC-2095 has 32 labeled BNC connectors, one for each input channel of the SCXI-1100, or SCXI-1104/C. The BNC-2095 also includes circuitry for configurable signal referencing. You can enable or disable both the pull-up and pull-down resistors on a per-channel basis using switches.


TC-2095777509-01

The TC-2095 has 32 miniature uncompensated thermocouple plugs, one for each input channel of the SCXI-1100 or SCXI-1102/B/C and a thermistor for accurate cold-junction compensation. In addition, the TC-2095 includes circuitry for configurable signal referencing. You can enable or disable both the pull-up and pull-down resistors on a per-channel basis using switches located on the rear of the TC-2095. The TC-2095 is not recommended for use with the SCXI-1104/C. The TC-2095 requires the SH96-96 or R96-96 for connection to a SCXI module.

Designed for thermocouples, with cold-junction compensation sensor, isothermal construction with a plastic cover to minimize thermal gradients, open-thermocouple detection circuitry, and automatic ground-referencing circuitry. With the SCXI-1102B/C, the TBX-1303 provides a high-impedance path to ground so that systems work reliably with either floating or ground-referenced thermocouples. For applications with the SCXI-1100, you can configure the channels as ground-referenced or floating in blocks of eight channels. The TBX-1303 also works with the SCXI-1181 breadboard module.

TBX-1316 (See Figure 12)777207-16 High-voltage terminal block, for extending the input range of the SCXI-1120/D, SCXI-1125, or SCXI-1126 modules to ± 1000 VDC (680 V_{rms}) Each input channel includes a 200:1 attenuation circuit, and offers a positive, negative, and ground terminal for up to 12 AWG wire. You can panel mount this enclosure or simply place it on a desktop. The hinged lid makes accessing the signals easier and key locked for safety. The TBX-1316 is rated for Category III installations.

TBX-1326 (See Figure 13)777207-26 High-voltage terminal block with 48 screw terminals for signal connections to the SCXI-1162, SCXI-1162HV, SCXI-1163, and SCXI-1163R modules. You can cable the TBX-1326 to the SCXI module with the SH48-48-B shielded cable. Warning: The TBX-1326 and SH48-48-B limit the maximum working common-mode voltage between banks or between banks and earth ground to 250 $\ensuremath{V_{rms}}$ maximum.

TBX-1328 (See Figure 14)777207-28 Terminal block for the SCXI-1120/D, SCXI-1121, SCXI-1125, and SCXI-1126 modules. The TBX-1328 includes a total of 24 screw terminals, including three terminals (CH+, CH-, and chassis ground) for each input channel and sockets for the installation of resistors for 4 to 20 mA inputs. When used with thermocouples, the TBX-1328 maximizes measurement accuracy with an isothermal construction and a plastic cover that minimizes thermal gradients across the terminal block and the resulting errors.

Provides selectable AC coupling for the SCXI-1120/D, SCXI-1121, SCXI-1125, and SCXI-1126 modules.

TBX-24F777276-01 The TBX-24F is a general-purpose screw terminal block with feedthrough connections for 24 signal lines. You connect the TBX-24F to the SCXI module with

discrete wires connected to a standard SCXI terminal block.

Figure 11. TBX-1303

Figure 12. TBX-1316

Figure 13. TBX-1326

Figure 14. TBX-1328

Figure 15. TBX-1329

SCXI-13xx, TBX, and **BNC/TC Terminal Block Specifications**

Specifications-

Typical for 25 °C unless otherwise noted.

SCXI-13xx

Cold-Junction Sensor Accuracy and repeatability1

Te			
SCXI-1303 ²			

Sensor output	for SCXI-1300,
---------------	----------------

SCXI-1320, SCXI-1321.....

SCXI-1303/1322/1327/1328...... 1.91 V (at 0 °C) to 0.58 V (at 55 °C) (thermistor)

Maximum field wire gauge for SCXI-1300/ 1302/1303/1314/1322/1324

1301/1304/1313/1315/1320/1321/ 1325/1327/1328/1331/1332.....

26-14 AWG

AC coupling (SCXI-1304 and SCXI-1305).......

The AC coupling circuitry on each channel has a corner frequency of 0.16 Hz, rejection capacity of ±50 VDC, and input impedance of 2 M differential,

1 M common mode.

Corner frequency 0.16 Hz 1-pole RC +50 VDC

DC rejection capacity Current input SCXI-1308/1338 0 to 20 mA

BNC-2095, TC-2095

Input	con	nect	tors
D	NIC	200	С

...... 32 BNC connectors

TC-2095..... Cold-junction sensor (TC-2095)

32 thermocouple plugs, uncompensated

1.91 V (0 °C) to 0.58 V (55 °C)

Accuracy (15 to 35 °C)³ 0.5 °C for SCXI-1102/B/C

0.65 °C for SCXI-1100

Repeatability (15 to 35 °C)3......

0.35 °C for SCXI 1102/B/C 0.5 °C for SCXI-1100

Signal referencing CH+ input...

...... 10 M to +5 V, user switchable 10 M or +10 to ground, user switchable 1-pole RC

CH- input...

Physical

Data Acquisition and Signal Conditioning

49.3 by 4.3 by 18.8 cm (19.0 by 1.7 by 7.4 in.)

(user configurable, socketed)

TBX Series

Typical for 25° C unless otherwise noted.

Maximum working voltage (signal + common mode)

TBX-1325 ... $250 \, \mathrm{V}_{\mathrm{rms}}$ TBX-1326/1328/1329/24F..... 300 V_{rm}

Signal referencing on TBX-1303

CH+ input..... 10 M to +5 V (socketed) CH- input...... 10 M or 10 to ground

Input inpedance for TBX-1316

Differential.....

Absolute accuracy for TBX-1316

Temperature drift..... 20 ppm/°C AC Coupling (TBX-1329 only)

Corner frequency 0.072 Hz 1-pole RC

Cold-Junction Sensor (TBX-1303 and TBX-1328)

Accuracy and repeatability4

Terminal Block	15 to 35 °C	0 to 15 °C and 35 to 55 °C	Repeatability
Sensor output		1.91 V (at 0 °C) to 0.58 V (at 5	55 °C) (thermistor)
General			
Physical			
Compatible DIN rails ⁵		DIN EN 50 022, DIN EN 50 03	35
Screw terminal size			
TBX-1316		26-12 AWG	

Accuracy

19.7 by 11.2 by 7.62 cm
(7.8 by 4.4 by 3.0 in.)
30 by 20 by 8.1 cm
(11.8 by 7.9 by 3.2 in.)
12.7 by 11.2 by 7.62 cm
(5.0 by 4.4 by 3.0 in.)
12.4 by 4.3 by 5.1 cm
(4.9 by 1.7 by 2.0 in.)
19.8 by 12.6 by 6.3 cm
(7.8 by 4.9 by 2.5 in.)

Certification and Compliance

SCXI-1320/1321/1326/1327/1328/1338	300 V, Cat II working voltage
SCXI-1322/1324/1325	250 V, Cat II working voltage
TBX-1316	1000 V, Cat III working voltage
TBX-1328/1329	300 V, Cat II working voltage
TBX-1325/1326	250 V, Cat II working voltage

Furopean Compliance

EMC	EN 61326 Group I Class A, 10 m
	Table 1 Immunity
Safety	EN 61010-1

North American Compliance

North American compilance	
EMC	FCC Part 15 Class A using CISPR
Safety (SCXI-1320/1321/1326/1327/1328/	
1338/SCXI-1322/1324/1325)	UL Listed to UL 3111-1
	CAN/CSA C22.2 No. 1010.1
Safety (TBX-1325/1326/1328/1329)	UL Listed to UL 3111-1
	CAN/CSA C22 2 No. 1010 1

Australia and New Zealand Compliance

EMC (except TBX-1316) AS/NZS 2064.1/2 (CISPR-11)

¹Accuracy and repeatability include combined effects of sensor, circuitry, and thermal gradients between the sensor and any screw terminal. Thermal gradients for nonisothermal terminal blocks (SCXI-1300, SCXI-1320, SCXI-1321, SCXI-1322, and SCXI-1327) are assumed to be 0.4 °C.

²With SCXI-1102 module. With SCXI-1100 module, add error of 0.15 °C

³Accuracy and repeatability include combined effects of sensor, circuitry, and thermal gradients between the sensor and thermocouple connection.

⁴Accuracy and repeatability include combined effects of sensor, circuitry, and thermal gradients between the sensor and any screw terminal.

5TBX-1316 is not DIN-rail mountable

⁶Height dimension (7.62 cm) includes DIN-rail mounting and plastic cover.

For a definition of specific terms, please visit ni.com/glossary